Tri-connectivity Augmentation in Trees

نویسندگان

  • S. Dhanalakshmi
  • N. Sadagopan
  • V. Manogna
چکیده

For a connected graph, a minimum vertex separator is a minimum set of vertices whose removal creates at least two connected components. The vertex connectivity of the graph refers to the size of the minimum vertex separator and a graph is k-vertex connected if its vertex connectivity is k, k ≥ 1. Given a k-vertex connected graph G, the combinatorial problem vertex connectivity augmentation asks for a minimum number of edges whose augmentation to G makes the resulting graph (k + 1)-vertex connected. In this paper, we initiate the study of r-vertex connectivity augmentation whose objective is to find a (k + r)-vertex connected graph by augmenting a minimum number of edges to a k-vertex connected graph, r ≥ 1. We shall investigate this question for the special case when G is a tree and r = 2. In particular, we present a polynomial-time algorithm to find a minimum set of edges whose augmentation to a tree makes it 3-vertex connected. Using lower bound arguments, we show that any tri-vertex connectivity augmentation of trees requires at least ⌈ 2l 1 +l 2 2 ⌉ edges, where l1 and l2 denote the number of degree one vertices and degree two vertices, respectively. Further, we establish that our algorithm indeed augments this number, thus yielding an optimum algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The eccentric connectivity index of bucket recursive trees

If $G$ is a connected graph with vertex set $V$, then the eccentric connectivity index of $G$, $xi^c(G)$, is defined as $sum_{vin V(G)}deg(v)ecc(v)$ where $deg(v)$ is the degree of a vertex $v$ and $ecc(v)$ is its eccentricity. In this paper we show some convergence in probability and an asymptotic normality based on this index in random bucket recursive trees.

متن کامل

Simpler Sequential and Parallel Biconnectivity Augmentation

For a connected graph, a vertex separator is a set of vertices whose removal creates at least two components and a minimum vertex separator is a vertex separator of least cardinality. The vertex connectivity refers to the size of a minimum vertex separator. For a connected graph G with vertex connectivity k (k ≥ 1), the connectivity augmentation refers to a set S of edges whose augmentation toG...

متن کامل

R-connectivity Augmentation in Trees

A vertex separator of a connected graph G is a set of vertices removing which will result in two or more connected components and a minimum vertex separator is a set which contains the minimum number of such vertices, i.e., the cardinality of this set is least among all possible vertex separator sets. The cardinality of the minimum vertex separator refers to the connectivity of the graph G. A c...

متن کامل

Subgraph Induced Planar Connectivity Augmentation

Given a planar graph G = (V,E) and a vertex set W ⊆ V , the subgraph induced planar connectivity augmentation problem asks for a minimum cardinality set F of additional edges with end vertices in W such that G′ = (V,E∪F ) is planar and the subgraph of G′ induced by W is connected. The problem arises in automatic graph drawing in the context of c-planarity testing of clustered graphs. We describ...

متن کامل

Tri-Edge-Connectivity Augmentation for Planar Straight Line Graphs

It is shown that if a planar straight line graph (PSLG) with n vertices in general position in the plane can be augmented to a 3-edge-connected PSLG, then 2n−2 new edges are enough for the augmentation. This bound is tight: there are PSLGs with n ≥ 4 vertices such that any augmentation to a 3-edge-connected PSLG requires 2n− 2 new edges.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2016